Public Input Opportunity

Your water board meets at 6:00 pm on the second Thursday of each month at 4045 Deerfield Village Houston, Texas 77084

To learn about future public meetings (concerning your drinking water) or to request to schedule one, please call us at (281) 367-5511.

En Español

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (281) 367-5511.

2015 Annual Drinking Water Quality Report

(Consumer Confidence Report)

HARRIS COUNTY MUNICIPAL UTILITY DISTRICT NO. 136

Our Drinking Water Meets or Exceeds All Federal Drinking Water Requirements

This report is a summary of the quality of the water we provide our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented on the back of this form. We hope this information helps you become more knowledgeable about what's in your drinking water.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

ALL drinking water may contain contaminants

When drinking water meets federal standards there may not be any healthy based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Special Notice for the Elderly, Infants, Cancer Patients, People with HIV/AIDS or Other Immune Problems

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immuno-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk for infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline: (800-426-4791).

Where Do We Get Our Water?

Our drinking water is obtained from groundwater and surface water sources. Our groundwater comes from the Chicot aquifer and our surface water comes from the West Harris County Regional Water Authority. The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and protection efforts at our system, please contact John Montgomery of our Regulatory Compliance Department at (281) 367-5511.

About the Tables

The attached table contains all of the chemical contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants. All contaminants detected in your water are below state and federal allowed levels. The state of Texas allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

DRINKING WATER DEFINITIONS & UNITS DESCRIPTION

ABBREVIATIONS / DEFINITIONS

MCLG	Maximum Contaminant Level Goal- The level of a contaminant in drinking water below which there is no known or expected health risks. MCLGs allow for a margin of safety.
MCL	Maximum Contaminant Level- The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
MRDLG	Maximum Residual Disinfection Level Goal- The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLs do not reflect the benefits of the use of

disinfectants to control microbial contaminants.

ABBREVIATIONS / DEFINITIONS

MRDL	Maximum Residual Disinfection Level- The highest level of a							
	disinfectant allowed in drinking water. There is convincing evidence							
	that addition of a disinfectant is necessary for control of microbial							
	contaminants.							
Avg	Regulatory compliance with some MCLs are based on running annual average of monthly samples.							
N/A	Not applicable ND Not Detected							
pCi/L	Picocuries per liter (a measure of radioactivity)							
ppm	parts per million, or milligrams per liter(mg/L) or one ounce in 7,350 gallons of water.							
ppb	parts per billion, or micrograms per liter (ug/L) or one ounce in 7,350,000 gallons of water							
NTU	Nephelometric Turbidity Unit							

	n from Harris County MUD) 136 (PWS # 10	110599)					
norganic Cont	taminants							
Year	Contaminant	Highest Level Detected	Range of Detected Levels	MCL	MCLG	Units	Violation	Source of Contaminant
2010	Barium	0.0614	0.0614 - 0.0614	2	2	ppm	No	Discharge of drilling wastes: Discharge fror metal refineries; Erosion of natural deposits
2014	014 Fluoride 0.26		0.26 - 0.26	4	4	ppm	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge fro fertilizer and aluminum factories.
2014	Cy anide	60	60 - 60	200	200	ppb	No	Discharge from plastic and fertilizer factories Dishcarge from steel/metal factories.
2015	Nitrate	0.86	.8686	10	10	ppm	No	Runoff from fertilizer use; Leaching from sep tanks, sewage; Erosion of natural deposits
2015	Nitrite	Less Than Detection Limit	Less Than Detection Liimit	1	1	ppm	No	Runoff from fertilizer use; Leaching from septanks, sewage; Erosion of natural deposits
adioactive Co	ontaminants							
Year	Contaminant	Highest Level Detected	Range of Detected Levels	MCL	MCLG	Units	Violation	Source of Contaminant
2011	Combined Radium 226/228	1.0	1.0 - 1.0	5	0	pCi/L	No	Erosion of natural deposits
2011	Beta/photon emitters	4.8	4.8 - 4.8	50	0	pCi/L	No	Decay of natural and man-made deposits
2009	Uranium	8.344	7.4 - 8.344	30	0	ppb	No	Erosion of natural deposits
isinfection By	y-products ¹							
Year	Contaminant	Av erage Lev el	Levels	MCL	MCLG	Units	Violation	Source of Contaminant
2015	Haloacetic	23	3.8 - 33.2	60	No goal for the total No goal for	ppb	No	By-product of drinking water disinfection
2015	Total Trihalomethanes	34	3.8 - 38.8	80	the total	ppb	No	By-product of drinking water disinfection.

¹ This evaluation is sampling required by EPA to determine the range of total Trihalomethanes in the system for future regulations. The samples are not used for compliance, and may have been collected under non-standard conditions; EPA requires the data to be reported here. Please contact your water system representative if you have any questions.

Unregulated C	Unregulated Contaminants ²										
Year	Contaminant	Highest Level Detected	Range of Detected Levels	Av erage Lev el	MCL	Units	Violation	Source of Contaminant			
2015	Bromodichloromethane	9	1.1 - 9.0	6.6	100.0	ppb	No	By-product of drinking water chlorination.			
2015	Chloroform	27.5	2.7 - 27.5	14.9	100	ppb	No	By-product of drinking water chlorination.			
2015	Dibromochloromethane	3.2	<1 - 3.2	<2.4	100	ppb	No	By-product of drinking water chlorination.			

² Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Any unregulated contaminants detected are reported in the follow table. For additional information and data visit http://www.epa.gov/safewater/ucmr/ucmr2/index.html, or call the Safe Drinking Water Hotline at (800) 426-4791.

Synthetic organic	Synthetic organic Contaminants											
		Highest Level	Range of Detected									
Year	Contaminant	Detected	Levels	MCL	MCLG	Units	Violation	Source of Contaminant				
2015	Atrazine	0.16	.1616	3	3	ppb	No	Runoff from herbicide used in row crops				
		Less Than	Less Than Detection					Runoff from herbicide used in row crops				
2015	Dalpon	Detection Limit	Limit	200	200	ppb	No	Runoii iloin herbicide asea in row crops				

Maximum Residu	ual Disinfectant Level								
			Minimum	Maximum			Unit of		
Year	Contaminant	Av erage Lev el	Lev el	Lev el	MRDL	MRDLG	Measure	Violation	Source of Contaminant
2015	Chlorine Residual (Total)	2.32	0.7	3.80	4	4	ppm	No	Disinfectant used to control microbes.
Lead & Copper									
		The 90th	Number	of Sites	Action	Unit of			
Year	Contaminant	Percentile	Ex ceeding A	Action Level	Level	Measure	MCLG	Violation	Source of Contaminant
2015	Lead ³	2		1	15	ppb	0	No	Corrosion of household plumbing systems;
2015	Leau	3		'	15	ppb	U	NO	erosion of natural deposit.
0045		0.474			4.0		4.0		Corrosion of household plumbing systems;
2015	Copper	0.471		!	1.3	ppm	1.3	No	erosion of natural deposit.

Additional Heath Information for Lead: "If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available form the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead."

Turbidity

NOT REQUIRED

Total Coliform/Fecal Coliform

REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA.

REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA.

From January to December 2015, Harris County MUD 136 received surface water through an open interconnect with the West Harris County Regional Water Authority (WHCRWA). The following table contains all the chemical contaminants found in the WHCRWA's water supply. If you have any additional questions regarding the water supply, please call (281) 367-5511

Information from WHCRWA - (Interconnect) (PWS # 1013303)

IIIIOIIIIau	-		, ,					
Inorganic Co	ontaminants							
		Av erage						
Year	Contaminant	Lev el	Range of Detected Levels	MCL	MCLG	Units	Violation	Source of Contaminant
2015	Nitrate	0.59	.5959	10	10	nnm	No	Runoff from fertilizer use; Leaching from septic
2013	Miliale	0.59	.5555	10	10	ppm	INU	tanks, sewage; Erosion of natural deposits.
2015	Nitrite	0.03	.0303	1	1	ppm	No	Runoff from fertilizer use; Leaching from septic
2013	INIUIC	0.00	.00 .00	1	'	ррпі	INU	tanks, sewage; Erosion of natural deposits.
Disinfectants	By-Products ⁴							
Disinfectants	s By-Products⁴	Average						
Disinfectants Year	By-Products ⁴ Contaminant	Average Level	Range of Detected Levels	MCL	MCLG	Units	Violation	Source of Contaminant
Year	Contaminant	Level	· ·		MCLG No goal for the			
		•	Range of Detected Levels 20.5 - 20.2	MCL 60		Units ppb	Violation No	Source of Contaminant By-products of drinking water disinfection.
Year	Contaminant	Level	· ·		No goal for the			

⁴ This evaluation is sampling required by EPA to determine the range of total Trihalomethanes in the system for future regulations. The samples are not used for compliance, and may have been collected under non-standard conditions; EPA requires the data to be reported here. Please contact your water system representative if you have any questions.

Unregulated (Contaminants ⁵							
		Highest Level		Av erage				
Year	Contaminant	Detected	Range of Detected Levels	Lev el	MCL	Units	Violation	Source of Contaminant
2015	Bromodichloromethane	9	9-Sep	9	100.0	ppb	No	By-product of drinking water chlorination.
2015	Chloroform	20.0	20 - 20	20	100	ppb	No	By-product of drinking water chlorination.
2015	Dibromochloromethane	3.4	3.4	3.4	100	ppb	No	By-product of drinking water chlorination.

⁵ Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Any unregulated contaminants detected are reported in the follow table. For additional information and data visit http://www.epa.gov/safewater/ucmr/ucmr2/index.html, or call the Safe Drinking Water Hotline at (800) 426-4791.

Water Loss

In the water loss audit submitted to the Texas Water Development Board for the time period of Jan-Dec 2015, our system lost an estimated 8,368,236 gallons of water.

If you have any questions about the water loss audit please call (281) 367-5511.

Secondary Constituents

Many constituents (such as calcium, sodium or iron) which are often found in drinking water, can cause taste, color and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may greatly affect the appearance and taste of your water.

Outdoor Water Conservation Tips:

- To keep your lawn healthy during the summer months - it only takes 1" of water a week.
- During the hot summer months, try to water in the early morning or late evenina.
- In hot summer months, set your lawn mower to a higher setting, because taller grass helps hold in moisture.
 Cutting your grass too short can cause you to water more and can cause the grass to burn easier.
- Set your sprinkler system to a timer and adjust during the different seasons.

Indoor Water Conservation Tips:

- To save on water and energy, always run your dishwasher with a full load.
- o Take a shower instead of a bath.
- Check for leaks in your toilets and faucets. (A helpful hint is to schedule this for every six months when you are checking your smoke detectors.)
- When brushing your teeth, shaving, or washing your hands, only run the water when it is time to rinse.